TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase‐dependent mechanism

نویسندگان

  • Chang Xu
  • Xiaoyan Wu
  • Bradley K. Hack
  • Lihua Bao
  • Patrick N. Cunningham
چکیده

A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Tumor Necrosis Factor Disrupts Claudin-5 Endothelial Tight Junction Barriers in Two Distinct NF-κB-Dependent Phases

Capillary leak in severe sepsis involves disruption of endothelial cell tight junctions. We modeled this process by TNF treatment of cultured human dermal microvascular endothelial cell (HDMEC) monolayers, which unlike human umbilical vein endothelial cells form claudin-5-dependent tight junctions and a high-resistance permeability barrier. Continuous monitoring with electrical cell-substrate i...

متن کامل

Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases.

Endothelial cells (ECs) actively regulate the extravasation of blood constituents. On stimulation by vasoactive agents and thrombin, ECs change their cytoskeletal architecture and small gaps are formed between neighboring cells. These changes partly depend on a rise in [Ca(2+)](i) and activation of the Ca(2+)/calmodulin-dependent myosin light chain kinase. In this study, mechanisms that contrib...

متن کامل

The Role of the Microtubules in Tumor Necrosis Factor- –Induced Endothelial Cell Permeability

Tumor necrosis factor (TNF), a major proinflammatory cytofilaments, intermediate filaments, and microtubules (3). Tukine, triggers endothelial cell activation and barrier dysfunction mor necrosis factor (TNF), a proinflammatory cytokine which are implicated in the pathogenesis of pulmonary edema secreted by macrophages and endothelial cells, has been associated with acute lung injury syndromes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015